
PHASG473 - Electronic Structure Methods for Ma-
terials Modelling

Exercises

1.1 Introducing Molecular Dynamics

You are looking at an ion of mass m embedded in a particularly viscous
liquid solvent. The above mentioned ion is sitting on top of an atomically flat
surface. The interaction between the ion and the surface can be described
by a harmonic potential Uh:

Uh =
1

2
kx2 (1)

where k is the stiffness of the ”bond” between the ion and the surface and
x is the bond length (we assume the bond extends along the normal with
respect to the surface). Because of the viscous solvent, there is also an
additional dissipation function Us of the form:

Us =
1

2
bẋ2 (2)

• Write down the Newton’s equation of motion for the ion using β = b
2m

and ω0 =
√

k
m (hint: divide every term by /m first). Note that the

force due to the dissipation function can be obtained by taking the
velocity gradient of Eq. 2.

• Solve the Newton’s equation of motion for the ion (hint: perform the
substitution x = eiγt first), obtaining:

x = e−βt±i
√
ω2
0−β2·t (3)

• Picking the positive solution only, using α =
√
ω2
0 − β2, applying Eu-

lero’s rule (eix = cos(x) + i sin(x)) and considering the real part of the
solution only (we are allowed to do that, as the real and imaginary part
separately satisfy the equation of motion) you should end up with:

x = e−βt · [A cos(αt) +B sin(αt)] (4)

• Choosing A = 1 and B = 0, derive the expression for ẋ
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• Perform the following linear transformations: (u = x and w = x +
ẋ). Now you have a parametric expression for the position x and the
momentum (well, just the velocity here...) ẋ. Plot these guys for
α = 10 and β = 1 to obtain the phase space plot depicted in Fig. 1 -
the same logarithmic spiral of the Nautilus.
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Figure 1: Phase space for the system introduced in Exercise 1.1 - a nicer
counterpart on the right.

1.2 Ab initio Molecular Dynamics

Given a rather peculiar quantum system described by the following Hamil-
tonian:

Ĥfake =
Nel∑
i=1

Nnu∑
j=1

1

|ri −Rj |
+ log[(Rxj )2] (5)

where ri, Rj and Rxj are the position vector for the i-th electron, the position
vector for the j-th nucleus and the component along the x direction of the
latter respectively, demonstrate that the x component of the force acting on
a particular nucleus λ can be written as:

FRλx = −〈ψfake|
Nel∑
i=1

rxi −Rxλ
|ri −Rλ|3

+
2

Rλx
|ψfake〉 (6)
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where ψfake are eigenfunctions of Ĥfake (hint: use the Hellmann-Feynamn
theorem).

1.3 Ensembles Medley

Derive the partition function Γ for the isoenthalpic-isobaric ensemble:

Γ(N, βp,H) =

∫ ∞
0

dV

∫
dx δ(H(x) + PV −H) (7)

performing the (inverse! Mind the minus sign...) Laplace transform β → H
from the isothermal-isobaric ensemble partition function ∆(N, βp, β) (hint:
the fact that you end up with a Dirac delta function suggests you’ll have to
backtrack till the partition function of the NVE ensemble).
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